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ABSTRACT Due to a lack of effective immune clearance, the airways of cystic fibro-
sis patients are colonized by polymicrobial communities. One of the most wide-
spread and destructive opportunistic pathogens is Pseudomonas aeruginosa; how-
ever, P. aeruginosa does not colonize the airways alone. Microbes that are common
in the oral cavity, such as Rothia mucilaginosa, are also present in cystic fibrosis pa-
tient sputum and have metabolic capacities different from those of P. aeruginosa.
Here we examine the metabolic interactions of P. aeruginosa and R. mucilaginosa us-
ing stable-isotope-assisted metabolomics. Glucose-derived 13C was incorporated into
glycolysis metabolites, namely, lactate and acetate, and some amino acids in R. mu-
cilaginosa grown aerobically and anaerobically. The amino acid glutamate was unla-
beled in the R. mucilaginosa supernatant but incorporated the 13C label after
P. aeruginosa was cross-fed the R. mucilaginosa supernatant in minimal medium and
artificial-sputum medium. We provide evidence that P. aeruginosa utilizes R. muci-
laginosa-produced metabolites as precursors for generation of primary metabolites,
including glutamate.

IMPORTANCE Pseudomonas aeruginosa is a dominant and persistent cystic fibrosis
pathogen. Although P. aeruginosa is accompanied by other microbes in the airways
of cystic fibrosis patients, few cystic fibrosis studies show how P. aeruginosa is af-
fected by the metabolism of other bacteria. Here, we demonstrate that P. aeruginosa
generates primary metabolites using substrates produced by another microbe that is
prevalent in the airways of cystic fibrosis patients, Rothia mucilaginosa. These results
indicate that P. aeruginosa may get a metabolic boost from its microbial neighbor,
which might contribute to its pathogenesis in the airways of cystic fibrosis patients.
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Cystic fibrosis (CF) patients experience persistent polymicrobial colonization of their
airways. Rothia mucilaginosa and Pseudomonas aeruginosa are microbes frequently

detected in CF patient airways, and their cooccurrence has been observed in CF patient
sputum (1–4). Microbes within polymicrobial infections display complex interactions,
such as metabolite cross-feeding (5). For example, P. aeruginosa inefficiently metabo-
lizes host-derived mucins. Rather, P. aeruginosa utilizes mucin degradation products
from oral anaerobes to support its growth (6, 7). Still, many studies of CF-associated
microbes are conducted under artificial conditions that fail to take into account the
nutrient and oxygen gradients found in CF patient airways (8, 9, 25). The lack of overlap
between laboratory conditions and CF patient airways is reflected by the differences in
growth rates, with estimates of bacterial doubling times being 100-fold times lower in
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sputum than in standard medium (10). Furthermore, most CF studies focus on single
microbes. One primary reason for this is the lack of a robust model to examine the
microbial interactions. Stable-isotope-assisted metabolomics analyzes the fate of heavy
atoms from stable-isotope-labeled precursors to products, which makes it a suitable
approach for monitoring metabolites produced by one microbe when cross-fed to a
second microbe. In order to further explore cross-feeding interactions between two CF
microbes in a relevant environment, we cross-fed labeled glycolysis products from
R. mucilaginosa to P. aeruginosa (8). Both strains were isolated from the sputa of CF
patients. We believe that our P. aeruginosa strain is representative of CF strains, as its
core genome is similar to that of P. aeruginosa strain PA17 and other CF isolates (11).
In an effort to mimic the CF airway environment, R. mucilaginosa was fed labeled
glucose in anaerobic and aerobic artificial-sputum media, and the R. mucilaginosa
supernatant was fed to P. aeruginosa in nutrient-rich (artificial-sputum medium) under
low-nutrient (M9 minimal medium) conditions. As P. aeruginosa lacks some glucose
utilization capacities, including a key enzyme involved in glycolysis, phosphofructoki-
nase, we postulated that cross-feeding metabolites from R. mucilaginosa impacts the
metabolism of P. aeruginosa (12).

R. mucilaginosa metabolism under aerobic and anaerobic conditions. R. muci-
laginosa was grown aerobically and anaerobically in artificial-sputum medium (see Text
S1 in the supplemental material). Under both anaerobic and aerobic conditions,
glucose-derived 13C was incorporated into glycolysis metabolites, namely, lactate and
acetate, and some amino acid biosynthesis pathways in R. mucilaginosa (Fig. 1; Ta-
ble S1). The labeled glucose was not incorporated into the tricarboxylic acid (TCA) cycle,
pentose phosphate pathway, or long-chain fatty acid biosynthesis pathways. For most

FIG 1 Glucose-derived 13C was incorporated into pyruvate, lactate, acetate, alanine, valine, serine, glycine, leucine, and isoleucine in R. mucilaginosa under both
anaerobic and ambient-oxygen conditions. M�2, M�3, M�4, and M�5 indicate compounds that contained 2, 3, 4, and 5 13C atoms, respectively. Isotope
enrichment means an abundance of labeled ion/unlabeled ion (corrected for natural abundance). Isotope enrichment was greater at 24 h than at 8 h or 4 h.
For pyruvate, alanine, valine, and acetate, greater isotope enrichment was observed under anaerobic conditions at 24 h. For lactate, glycine, serine, and
isoleucine, greater isotope enrichment was observed under ambient-oxygen conditions at 24 h. The incorporation of glucose-derived 13C into leucine
biosynthesis was not affected by oxygen conditions. Dashed lines and solid lines indicate multiple steps and one metabolic step(s) needed to obtain the
metabolite, respectively. Error bars, means � standard deviations (SD) (n � 3 bacterial cultures per group); TCA, citric acid cycle; PPP, pentose phosphate
pathway.
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metabolites, 13C incorporation rates were different under different oxygen conditions.
For pyruvate, alanine, valine, and acetate, greater label ratios were observed under
anaerobic conditions at 24 h. In contrast, lactate, glycine, serine, and isoleucine
had greater label ratios under aerobic conditions at 24 h. The incorporation of
[U-13C6]glucose into leucine biosynthesis was not impacted by oxygen conditions.
Carbon fate in R. mucilaginosa diverged after 3-phosphoglycerate. The 13C label was
incorporated into serine and glycine, or into pyruvate, the precursor for lactate, acetate,
and some amino acids.

Cross-feeding interactions between R. mucilaginosa and P. aeruginosa. In order

to study the impact of R. mucilaginosa metabolites on P. aeruginosa, we cross-fed
supernatant from an aerobic 48-h R. mucilaginosa culture to P. aeruginosa grown under
low-nutrient conditions (M9 minimal medium) and nutrient-rich conditions (artificial-
sputum medium). P. aeruginosa was grown for 120 h before the cells were harvested in
order to recapitulate the low growth rates of bacteria in CF patient sputa (10). The
R. mucilaginosa supernatant included labeled lactate, pyruvate, and alanine (Fig. 2A;
Fig. S1; Table S2). P. aeruginosa utilized R. mucilaginosa-derived metabolites to produce
metabolites in M9 minimal medium and artificial-sputum medium. For example, al-
though labeled lactate was found in the R. mucilaginosa supernatant, it was not
detected in P. aeruginosa cultures, suggesting that P. aeruginosa consumed R. muci-
laginosa-derived lactate (Fig. 2A; Fig. S1; Table S2). P. aeruginosa utilization of lactate
and other fermentation products has been observed in other studies (6, 13). Since
lactate levels have been reported as an indicator of CF patient response to antibiotic
therapy, the finding that P. aeruginosa consumes lactate derived from another CF
microbe may have clinical implications (14).

Labeled metabolites detected in P. aeruginosa cells grown in minimal medium
included pyruvate, alanine, valine, serine, glycine, leucine, and isoleucine (Fig. 2A;
Fig. S1; Table S2). In addition, isotope enrichment for serine, glycine, leucine, and
isoleucine was greater in P. aeruginosa cells than in the supernatant of R. mucilaginosa,
indicating that P. aeruginosa biosynthesized those metabolites. In contrast, when
P. aeruginosa was grown in artificial-sputum medium, P. aeruginosa had higher levels of
a single isotope-enriched amino acid (isoleucine) than occurred in the R. mucilaginosa
supernatant (Fig. 2A; Fig. S1; Table S2). Interestingly, although the R. mucilaginosa
supernatant contained only unlabeled glutamate (Fig. 2B and C; Fig. S2; Table S3),
labeled glutamate was detected in both P. aeruginosa cultures (Fig. 2B, D, and E; Fig. S2;
Table S3). This suggests that P. aeruginosa biosynthesized glutamate from 13C sources
in the R. mucilaginosa supernatant even in a nutrient-rich background with initially
freely available glutamate (Text S1).

Glutamate provides a link between nitrogen and carbon metabolism by serving as
a major amine group donor in transamination reactions for the synthesis of additional
amino acids and nucleosides. In Escherichia coli, up to 88% of the total nitrogen that
ends up in a biomass comes from glutamate, and the cellular glutamate pool needs to
be kept high to drive the transamination reactions (15). In P. aeruginosa specifically,
glutamate is a component of the cell wall and may play a role in P. aeruginosa virulence
(16). Glutamate enhanced the yield of a virulence factor, exotoxin A (17), and induced
swarming motility in P. aeruginosa on semisolid surfaces (18). More recently, glutamate-
induced dispersion via c-di-GMP signaling pathways has been suggested (19). Gluta-
mate might be derived from glutamine or alpha-ketoglutarate (20–22). However, the
abundance of these two compounds was below the limit of quantification in this study.
Future studies are needed to examine the biosynthesis pathways of glutamate and its
role in the metabolism and physiology of P. aeruginosa. In summary, this study provides
evidence that metabolite cross-feeding exists between R. mucilaginosa and P. aerugi-
nosa, two common microorganisms found in polymicrobial communities in CF patient
airways. The results from our study provide evidence that the physiology of CF
pathogens can be influenced by the metabolic capabilities of other nearby microor-
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ganisms, even in a nutrient-rich environment, which can be tracked with stable-
isotope-labeled metabolomics.

Culture conditions and metabolomics. The bacterial strains chosen for this study
were isolated from CF patients at the UCSD Adult CF Clinic: Pseudomonas aeruginosa

FIG 2 Cross-feeding interactions between R. mucilaginosa and P. aeruginosa. M�1, M�2, M�3, M�4, and M�5 indicate compounds that contained 1, 2, 3,
4, and 5 13C atoms, respectively. Error bars, means � SD (n � 3 bacterial cultures per group). (A) Labeled lactate was found in the R. mucilaginosa (Rm)
supernatant but not in P. aeruginosa (Pa) cells. In M9 minimal medium, P. aeruginosa cells contained isotopically enriched pyruvate, alanine, valine, serine,
glycine, leucine, and isoleucine. In artificial-sputum medium, P. aeruginosa cells contained isotopically enriched valine, glycine, and isoleucine. (B) Although the
R. mucilaginosa supernatant contained only unlabeled glutamate, labeled glutamate was detected in the P. aeruginosa cells grown in artificial-sputum medium
and M9 minimal medium. (C to E) Glutamate spectrum for the R. mucilaginosa supernatant (C), P. aeruginosa grown in M9 minimal medium spiked with the
R. mucilaginosa supernatant (D), and P. aeruginosa grown in artificial-sputum medium spiked with the R. mucilaginosa supernatant (E).
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PaFLR01 and Rothia mucilaginosa RmFLR01 (11, 23). First, we took time points from
R. mucilaginosa cultures to examine the kinetics of metabolites in glycolysis, the TCA
cycle, amino acid biosynthesis, short- and long-chain fatty acid biosynthesis, and the
pentose phosphate pathway in R. mucilaginosa, which was grown in triplicate in
artificial-sputum medium (24) spiked with 100 mM [U-13C6]D-glucose (Sigma-Aldrich
and Cambridge Isotope Laboratory) under anaerobic and aerobic oxygen conditions
(5% CO2) at 37°C. R. mucilaginosa cells were harvested at 4 h, 8 h, and 24 h. For the
metabolite cross-feeding study, R. mucilaginosa was grown in the same medium
aerobically for 48 h. The R. mucilaginosa supernatant was collected by filtering the
culture, and the supernatant was diluted 10-fold in M9 minimal medium supplemented
with succinate and in fresh artificial-sputum medium. P. aeruginosa was grown in
triplicate aerobically, and the cells were harvested at 120 h. Metabolite extraction and
data acquisition were carried out by following West Coast Metabolomics Center
standard operating procedures (Text S1). Agilent MassHunter quantitative analysis
software (v. B.07.00) was used for raw data processing. Natural abundance was cor-
rected when isotope enrichment was calculated.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/
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